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Abstract—This paper discusses the needs and 

importance of research data management and introduces the 

concept of research data management as an infrastructure 

service. Although many resources have been made available 

for research data management, most of them are developed 

as “islands” and lack linking mechanisms. The lack of 

integrated and interconnected resources has contributed to 

high cost and duplicated efforts in data management 

operations. The vision of research data management as an 

infrastructure service is not only to improve the efficiency of 

research data management but also the productivity of the 

research enterprise. Each of the three dimensions—

infrastructure, standards, and policies—addresses a critical 

aspect of research data management to make the data 

infrastructure services work.  
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I.  INTRODUCTION  

Research data management has gained increasing 
recognition for its value and importance among funding 
agencies and research institutions, as evidenced by the fast 
growth of data repositories at disciplinary community and 
institutional levels. Examples of these repositories include 
the Global Biodiversity Information Facility (GBIF, 
http://www.gbif.org/), Dryad (http://datadryad.org/), and 
GenBank (http://www.ncbi.nlm.nih.gov/genbank/), among 
others. While these disciplinary repositories are important 
venues for data curation and sharing, they targeted on the 
end product of a research lifecycle. The large amounts of 
work necessary for data to reach the submission point are 
left to researchers to deal with.  

Two years ago the Science magazine conducted a 
survey to their peer reviewers from the previous year on 
the availability and use of data. The 1,700 responses 
represented input from an international and 
interdisciplinary group of scientific leaders. As the Science 
editorial reported, “About 20% of the respondents 
regularly use or analyze data sets exceeding 100 gigabytes, 
and 7% use data sets exceeding 1 terabyte. About half of 
those polled store their data only in their laboratories—not 
an ideal long-term solution. Many bemoaned the lack of 
common metadata and archives as a main impediment to 

using and storing data, and most of the respondents have 
no funding to support archiving” [1].  

The Science magazine survey presents two major 
problems in the current state of scientific data management 
in a research lifecycle: there is a lack of funding and staff 
support for managing active data and a lack of metadata 
standards and tools for managing active data in research 
lifecycle. What does it take to solve these problems? In 
other words, what needs to be done to provide the support 
necessary for improving research productivity through 
effective data management? The answers lie in a good 
understanding of research and data lifecycle and their 
implications to data management and support needed for 
managing scientific data.  

This paper will first discuss what a research and data 
lifecycle is and its relations and requirements to data 
management, and then go on to describe the three pillars in 
data management: institutionalization, standards, and 
infrastructure. As these three concepts may be interpreted 
differently in other contexts, each of them will be 
articulated with examples. The goal of this position paper 
is to raise the awareness of the data management issues 
and advocate for research data infrastructure services. 

II. RESEARCH LIFECYCLE AND DATA LIFECYCLE 

Lifecycle is a term frequently used in our technology-
driven society. Examples include information systems 
lifecycle, information transfer lifecycle, and many other 
variations depending on for which domain the term 
lifecycle is used. In the science data management domain, 
this term is used in several contexts: research lifecycle, 
data lifecycle, data curation lifecycle, and data 
management lifecycle. Each version has a different 
emphasis but they are often related or overlap in one way 
or the other. A research lifecycle generally includes study 
concept and design, data collection, data processing, data 
access and dissemination, and analysis [3]. As a research 
project progresses along the stages, different data will be 
collected, processed, calibrated, transformed, segmented or 
merged. Data at these stages go through one state to the 
next after certain processing or condition is performed on 
them. Some of these data are in the active state and may be 
changed frequently while others such as raw data and 
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analysis-ready datasets will be tagged with metadata for 
discovery and reuse. At each stage of this lifecycle, the 
context and type of research (Fig. 1) can directly affect the 
types of data generated and requirements for how the data 
will be processed, stored, managed, and preserved.  

 

 

 

Fig. 1. The types and contexts of research 

 

For example, in the United States, national research 
centers such as NCAR (National Center for Atmospheric 
Research) and NOAA (National Oceanic and Atmospheric 
Administration) regularly collect data about the global 
ecosystems and process them into data products for 
scientific research and learning. The research lifecycle and 
data lifecycle at this level will be different from those at 
the individual project level where teams of scientists have 
specific goals to solve specific problems. The scale of data 
and requirements for data management will vary along the 
stages of the whole lifecycle. National research centers are 
publically funded agencies and have the obligation of 
preserving and providing access to ecosystems data they 
collected. Hence generating data products and providing 
ways to discover and obtain data is crucial for them. 
Another example is the type of research projects carried 
out at academic institutions. These research projects can be 
collaborative among institutions or within a 
department/college within the same institution. The data 
collected and generated from these projects are specialized 
and subject to the control and regulation of different data 
policies and compliances, which creates a different set of 
issues and requirements for data management and use from 
those generated by the national research centers.  

Regardless of the context and nature of research, 
scientific data need to be stored, organized, documented, 
preserved (or discarded), and made discoverable and 
usable. The amount of work and time involved in these 
processes is daunting and intellectually intensive as well as 
costly. The personnel performing these tasks must be 
highly trained in technology and subject fields and able to 
effectively communicate between different stakeholders. 
In this sense, the lifecycle of research and data is not only 

a technical domain but also a domain requiring 
management and communication skills. To be able to 
manage scientific data at community, institution, and 
project levels without reinventing-the-wheel, a data 
infrastructure is necessary to provide the efficiency and 
services for scientific research as well as data 
management.  

III. RESEARCH DATA MANAGEMENT AS AN 

INFRASTRUCTURE SERVICE 

The data-centric research lifecycle no doubt relies 
heavily on effective research data management. But what 
is research data management? In a nutshell, research data 
management is essentially a series of services that an 
organization develops and implements through 
institutionalized data policies, technological 
infrastructures, and information standards. The concept of 
data infrastructure adopts the principle of “Infrastructure as 
a Service (IaaS),” which is “a standardized, highly 
automated offering, where compute resources, 
complemented by storage and networking capabilities are 
owned and hosted by a service provider and offered to 
customers on-demand” [4]. In the context of a data 
infrastructure, stakeholders will be able to carry out data 
management functions through a Web-based user 
interface.   

Infrastructure is a notion of modern society. Being 
modern is to live within and by means of infrastructures: 
basic systems and services that are reliable, standardized, 
and widely accessible, at least within a community. Susan 
Leigh Star and Karen Ruehdler [5] neatly summarized the 
features of infrastructures: 

 Embeddedness. Infrastructure is sunk into, inside 
of, other structures, social arrangements, and 
technologies. 

 Transparency. Infrastructure does not have to be 
reinvented each time of assembled for each task, 
but invisibly supports those tasks. 

 Reach or scope beyond a single event or a local 
practice. 

 Learned as part of membership.  

 Links with conventions of practice.  

 Embodiment of standards.  

 Built on an installed base. 

 Becomes visible upon breakdown. 

 Is fixed in modular increments, not all at once or 
globally. [5] 

These characteristics can also well describe the one 
that supports science data management. For example, a 
service that ingests a large number of small data files to 
build a searchable and filterable database can be scaled up 
for any disciplines that have the same data management 
need. 

Although so far there is no single agreed-upon 
definition for the concept of data infrastructure, scientific 
research powerhouses such as UK and US have 
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consistently invested in building it. In a recent program 
solicitation, the U.S. National Science Foundation (NSF) 
delineates that a data cyberinfrastructure has the functions 
of storing digital data, applying new methods, management 
structures and technologies to manage the diversity, size, 
and complexity of current and future data sets and data 
streams. Also required of the data infrastructure are data 
services to support acquisition, documentation, security 
and integrity, storage, access, analysis and dissemination, 
migration, and de-accession of data archives and 
repositories [6]. A report by the DG Information Society 
and Media in United Kingdom uses the term “e-
infrastructure” to refer to the technologies of various kinds 
for creating, collecting, annotating, manipulating, storing, 
finding and re-using information and services such as 
those to provide user support, training, and preservation. 
Included in this e-infrastructure are also information 
resources and associated tools such as vocabularies, 
ontologies, rights management and privacy protection 
systems, and curation [7]. In summary, a data 
infrastructure is an orchestration of technologies, data and 
metadata standards, and policies embedded in the research 
enterprise. Such an infrastructure may exist within an 
institution, a research community, or at national and 
international scales.  

 

IV. THREE DIMENSIONS OF DATA INFRASTRUCTURE 

SERVICES 

The concept of a data infrastructure implies three 
dimensions: technologies, data and metadata standards, 
and policies that govern the management, sharing, and use 
of data.  

A. The Technology Dimension  

The technology infrastructure covers a wide range of 
technologies for collecting, storing, processing, organizing, 
transmitting, and preserving data as well as platforms for 
communication and collaboration. Included in this 
dimension of the data infrastructure are networks, 
databases, authentication systems, and software 
applications. Scientific data and databases are different 
from conventional ones used for business transactions or 
employee records due to the idiosyncrasies of scientific 
data. Not only are scientific data collected from various 
sources such as observations, experiments, crowd-
contributions (e.g., data generated from citizen science 
projects), or computer modeling /simulations, but also 
come with a wide variety of types and formats as well as 
varying levels of processing. Raw data collected from 
observations, experiments, modeling, or simulations often 
need to go through a series processing, transformation, and 
quality check before the data can be used for analysis. 
Differences in data types and formats cross disciplines or 
even within the same discipline field can become barriers 
for data sharing and reuse [8]. The technological 
dimension of data infrastructure, therefore, is not just a 
simple technical issue but rather, is closely tied with the 
policies and standards.  

B. The Dimension of Data and Metadata Standards  

Another important dimension of a data infrastructure is 
data and metadata standards. Scientific data can be 

grouped into three large blocks based on discipline and 
type: 

 Physical and chemical data: include element data, 
chemical data, isotope data, and particle data; 

 Earth and astronomical data: range from weather 
and climate data, geodesy data to astronomical 
data for static and dynamic properties of stars, 
planets, and other objects; and  

 Life sciences data: this group contains a long list 
of varieties, including genome data, flora and 
fauna data, protein data, nucleotide sequences, 
biomedical and clinical data, and the list can go 
on. 

What complicates the diverse types of scientific data is 
the large number of data format standards that were 
developed since the introduction of computer into 
research. Fig. 2 shows data formats from the very basic 
physical level to metaformats to specialized scientific data 
formats. As data formats move from basic level to more 
specialized formats, the diversity and complexity increases 
drastically. The Common Data Format (CDF), for 
example, is a data format standard developed in 1985 by 
the National Space Science Data Center (NSSDC) and 
contains self-describing metadata for the storage and 
manipulation of scalar and multidimensional data in a 
platform- and discipline-independent fashion [9]. Another 
example is the biomedical data that appear in a large 
number of formats and each of them serves a specific type 
of data. . Protein Data Bank (PDB) format, for instance, is 
designed for recording macromolecular data for the PDB 
archive, including atomic coordinates, crystallographic 
structure factors and NMR (Nuclear Magnetic Resonance) 
experimental data. Aside from coordinates, each 
deposition also includes the names of molecules, primary 
and secondary structure information, sequence database 
references, where appropriate, and ligand and biological 
assembly information, details about data collection and 
structure solution, and bibliographic citations. 

 

 

 

Fig. 2. Data formats at different technical layers 

The complexity of scientific data types and formats 
requires specialized tools to process and analyze, which 
results in a large number of standards for both data and 
metadata. Data format standards specify how data are 
stored in computer and read by application software. In a 
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case scenario of large data archives, portable and self-
describing data formats are critical for data archiving to 
allow data sets to be read not only by current software in 
use but also by future technologies. The transmission of 
data also requires data in formats that can be delivered 
across hardware and software. Standardized data formats 
allow data to be 1) convertible—get in and out of storage 
easily, 2) portable—readable anywhere, and 3) 
extensible—can add types and structures later. Data 
formats are also critical for data to work with all software 
so that researchers can minimize the time spent converting 
between formats. 

Metadata standards for scientific data define the 
elements and their structures used to describe data sets. 
Each disciplinary field has its own metadata standard to 
describe data sets while sharing some common elements 
with other standards. The metadata standards shown in 
Fig. 3, for example, all need to use geospatial elements to 
describe the geographical region or location related to 
species, natural phenomena such as precipitation, 
temperature, and wind speed, and landscape features.  

 

Fig. 3. Major metadata standards and their relations through the 

geospatial description 

 

Metadata standards for scientific data are designed to 
document details about who collected the data at where, 
what the data content is about, and how the data were 
collected. All these are critical for effective data discovery 
and use. The complexity of scientific data mentioned 
earlier in this paper has led to complex metadata standards. 
It is not uncommon for metadata standards in the scientific 
data domain to have hundreds of elements with deep layers 
of structures. While complex, large metadata standards do 
provide a comprehensive description for data sets and 
satisfy the requirements for data discovery and use, their 
sizes can become barriers for metadata description because 
large standards make automatic metadata creation almost 
impossible and at the same time, manual metadata creation 
is time consuming and expensive and can never keep up 
with the pace of scientific data growth. At present, each 
metadata standard has its own tool(s) and most of them are 
standalone, that is, names of entities and controlled 
vocabularies are not automatically linked and relationships 
between data and publications need to be manually added. 
A data infrastructure will be able to tackle these problems 
by making metadata schema, entity instances, and 
controlled vocabularies into infrastructural services.  

C. The Policy Dimension 

Policies for scientific data cover a wide range of topics. 
From national and global perspectives, data policies are 
mostly related to data sharing, intellectual property 
protection, ethical issues, and open access [8]. At this 
level, the role of data policies is to guide the practices of 
data management, sharing, and use. The National Institute 
for Health (NIH) has implemented guidelines on data 
sharing as early as in 2003, which require projects 
exceeding $500,000 “in direct cost in any year” to include 
plans for data sharing [10]. NSF also made it mandatory in 
2011 that research grant proposals submitted to NSF must 
include a supplementary document with a label “Data 
Management Plan” (DMP). This supplementary document 
should describe how the proposal will conform to NSF 
policy on the dissemination and sharing of research results 
[11].  

The DMP mandate by NSF sprung a flurry of training 
tutorials, workshops, and studies on how DMP should be 
prepared to address the key questions on data archiving 
and sharing, data citation, copyright and 
privacy/confidentiality of data, data documentation and 
management, file formats and data types, data 
organization, security, and storage and backups of data. 
Research libraries in the U.S. developed DMP template 
tools and consulting services to help researchers prepare 
their DMP document in proposal writing process. The Data 
Management Consulting Group at the University of 
Virginia Library (http://dmconsult.library.virginia.edu/) 
and the Research Data Management Service Group at 
Cornell University 
(https://confluence.cornell.edu/display/rdmsgweb/Home) 
are two well know exemplar data management services 
offered by research libraries.  

The NSF mandate for data management plan also 
brought up many issues that many institutions have not 
well thought out before. For example, DMP requires 
research proposals to specify the types and formats of data 
to be produced and how they will be stored, shared, and 
managed. To address these requirements, researchers must 
make their DMP compliant with their institutional data 
policies in addition to the federal mandate. Researchers 
need to know what institutional policies are regarding 
which data types and formats should be archived, whether 
the institution has a data repository for storing their data 
files, and what procedures they should establish when 
sharing data with colleagues and community. In a content 
analysis of institutional data policies,    Bohémier et al. 
identified six aspects of data policies that should be 
addressed: data curation, management, use, access, 
publishing, and sharing. They discovered that data policies 
are implanted unevenly across institutions: only 15% of all 
policies applied to the institutions as a whole while most 
applied only to specific disciplines, collections, or projects 
[12].  

Data policies at national and institutional levels 
establish the framework for individual researchers and 
projects to make their policies in day-to-day operation. 
Different policies address different areas of questions. For 
data archiving purpose, an understanding of the nature of 
data can directly affect the policy. For example, data 
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generated from observing nature phenomena such as 
volcano eruptions, hurricanes, earthquakes, and 
precipitations cannot be reproduced or replicated, hence 
will be preserved indefinitely, while clinical trials on a 
drug’s effects on certain medical conditions can be and 
should be able to reproduced and replicated and hence may 
need to be archived for regulation and compliance 
purposes. When data are being actively worked on, they 
can change frequently. Creating comprehensive metadata 
descriptions for active data files may not be practical. A 
data policy at an individual project level can help 
researchers comply with funding agency and institutional 
requirements and at the same time establish best practices 
in managing data and preparing them for submitting to 
institutional and disciplinary data repositories for arching 
and sharing. 

In many ways, the process of developing data policies 
is also a process of institutionalization. “To 
institutionalizing something means to establish a standard 
practice or custom within a human system” [13]. Data 
management in many institutions and disciplinary fields is 
still an area to be studied. The survey findings mentioned 
at the beginning of this paper demonstrate the importance 
of institutionalization of data management, which includes 
establishing data policies, administrative support that will 
ensure the funding and personnel for data management 
operations, and best practice guidelines.  

V. CONCLUSION 

This paper discussed the needs and importance of 
research data management and introduced the concept of 
research data management as an infrastructure service. 
Although many resources are available for research data 
management, many of them are developed as “islands” and 
lack linking mechanisms. This has contributed to high cost 
and duplicated efforts in data management operations. The 
vision of research data management as an infrastructure 
service is not only to improve the efficiency of research 
data management but also the productivity of the research 
enterprise. Each of the three dimensions—infrastructure, 
standards, and policies—addresses a critical aspect to 
make the data infrastructure services work. In-depth 
studies will be needed to understand what user and 
architectural requirements there are for a data 
infrastructure in scientific domains, what resources have 
been made available and how can they be connected to 
support the research lifecycle and data management 
lifecycle, as well as what tools are needed and how various 

resources can be incorporated into the tools to make data 
management more effective and productive.  
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