Conceptual and Computational Workflows in Metadata Analytics

Jian Qin
School of Information Studies
Syracuse University
Metadata analytics

• The (very brief) history
• The motivation
• The perspective

What is it?

• Theories
• Methodologies
• Applications
What is (big) metadata?

An earlier definition

“…the structured, semi-structured, or unstructured descriptions of scientific data stored in repositories” (Bratt et al., 2017)

An updated brief version

The structured or semi-structured descriptions of information and/or data objects.

An updated long version

The structured or semi-structured descriptions of information and/or data objects in the forms of library catalogs, indexing databases, and metadata repositories.
The (very brief) history

- Price’s model: Preferential attachment process
- Power law distribution of citation network, first example of scale-free network
- Price’s law: square root law for relationships between authors and publications
- Exponential growth of science and half-life of science literature

Bibliometrics, Scientometrics: Theories (laws) built on math Quantitative methods
Macro- and micro-scale Authors, publications, citations

Price, Derek J. de Solla, 1922-1983.

Eugene Eli Garfield, 1925-2017
The changing landscape of metadata...
Old issues, great challenges

- The perpetual ambiguous author names
- Metadata is never readily usable for analysis
- Difficult to reuse code and workflows
- Limitations of current metadata structures
- Name disambiguation
- Constant data cleaning and processing
- Reinventing the wheel
- Linked data
Very large volume of data and very complex structures require careful planning for metadata analytics to avoid reinventing the wheel and/or waste of time and efforts.

Workflows are a method for ensuring effectiveness and quality of metadata analytics.
What is a workflow?

“the activity of defining the sequence of tasks needed to manage a business or computational science or engineering process” with four broad aspects:
 ◦ composition,
 ◦ mapping,
 ◦ execution, and
 ◦ Provenance.” (Deelman et al., 2009, p. 529).
An example of conceptual workflow in metadata analytics: Name disambiguation solutions (1)

Goal

1) improve accuracy of name-centric retrieval of information from GenBank
2) improve accuracy of data integration between GenBank and other sources

Task

1) Resolve each Author referenced in Genbank to a unique identifier (resolution).

In Genbank, authors are referenced by first initial and last name, giving rise to the following forms of ambiguity:

A) Multiple authors with the same last name and first initial (polysemy). Example: multiple authors named 'Smith, J.'

B) A single author with multiple name variants (synonymy). This can occur due to a name change, spelling variation (Anglicization of foreign names), or misspelling. Example: a single author referred to as 'Adams, E.' in one record and 'Adams-Hoffert, E.' in another.
An example of conceptual workflow in metadata analytics: Name disambiguation solutions (2)

2) Enhance metadata associated with each author referenced in GenBank (attribution).

To improve the ability to resolve a given GenBank author to an author referenced in another source, additional metadata will be associated with each uniquely identified author. This metadata could include:

A) Full name
B) Name variants
C) Organizational affiliations
D) Co-author affiliations
E) Subject matter expertise
F) etc.

Scope

The name disambiguation application will:

1) need to occasionally re-analyze the GenBank database when a significant amount of new information has been incorporated
2) need to handle updates to external resources such as author information in Pubmed
3) run as an offline (non-realtime) process
An example of conceptual workflow in metadata analytics: Name disambiguation solutions (3)

Steps

Resolution:
1) Get access to data and set up dev / test environment
2) Develop ground-truth / test data for assessing accuracy
3) Develop algorithm for assigning similarity score between each pair of author refs in GenBank database based on available metadata
4) Determine similarity threshold for considering two refs as same individual
5) Apply clustering method to group all refs
5) Measure accuracy and modify similarity / clustering algorithms as necessary
Workflows in (big) metadata analytics (Bratt, Hemsley, Qin, 2017)
Why do we need workflows in metadata analytics?

💡 Align your data collection, processing, and analysis with your research goals
 - make sure the data you collected are you needed for answering your research question

💡 Make a feasible plan step by step to keep your data and research stay on track

💡 Establish provenance for your research project to assure the reproducibility and replicability of your research
Tools for (computational) workflow management

Kepler Workflow Management System
https://kepler-project.org/

Pegasus Workflow Management System
https://pegasus.isi.edu/
Now we have conceptual and computational workflows, what comes next?
Linked data

- Available on the web
- Available as structured data readable by a machine
- Available in a non-proprietary format
- Expressed using open World Wide Web Consortium (W3C) standards
- Linked to other data on the web

What implications are there to the fields of bibliometrics and scientometrics?
Name disambiguation solutions

Traditional solution: use algorithms to automatically disambiguating author names
 ◦ However, if database producers keep current practice in abbreviating names, the problem will remain unresolved.

New solution: creating globally unique ID for researchers and authors

ORCID

VIAF
Virtual International Authority File

LC Linked Data Service Authorities and Vocabularies

ResearcherID

Union List of Artist Names® Getty Research Institute
Identifying things with globally unique identifiers

- **Subject terms** in controlled vocabularies
- **Events** (political, cultural, public health, social, ...)
- **Publications** (papers, versions of a paper, journals, ...)
- **Datasets** (research data, census data, observation data, sensor data...)
- **Cultural objects** (archives, museum objects, digital surrogates of physical objects...)

NANJING UNIVERSITY, OCTOBER 18, 2018
Metadata is changing to broaden the research horizon

Bibliometrics and scientometrics
Knowledge discovery for humanities and social sciences
Data services to support interdisciplinary large-scale research

- Uniquely identified authors, organizations, taxonomic classes, subject terms, datasets, publications, etc. in structured, linkable formats

Index databases; library catalogs; metadata repositories for datasets; digital libraries for scholarly pubs, special collections, and cultural objects

Big metadata analytics
Semantic infrastructure
Data infrastructure
Example: Mining large (meta)datasets for the humanities

<table>
<thead>
<tr>
<th>date_issued</th>
<th>description</th>
<th>coverage</th>
<th>series</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989-04-03</td>
<td><p>"Perestroika, glasnost: they don't even talk about them in Castro's Cuba. Violent insurgencies? The Cubans support them, the Soviets say they prefer political solutions. What are Gorbachev and Castro really talking about? Is there hope? Joining us live from Havana is the Soviet foreign minister's spokesman for the Soviet foreign ministry.</p> commercials. </p></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989-04-05</td>
<td><p>"It's been a horror story that the Marigold Institute Massachusetts where the criminally insane and those committed for civil reasons are held together.</p> Includes commercials.</p></td>
<td>Massachusetts</td>
<td>Nightline</td>
</tr>
<tr>
<td>1989-04-06</td>
<td><p>"... that’s the cost [$100-200 million] of cleaning-up [the Exxon Valdez oil spill], but are Americans willing to pay the much higher price of not having it happen again?</p> Includes commercials.</p></td>
<td>Alaska</td>
<td>Nightline</td>
</tr>
</tbody>
</table>

Example: Remodeling and transforming special collection metadata to linked archives


```
"@context": "https://linked.art/ns/v1/linked-art.json",
"id": "https://data.getty.edu/museum/11733",
"type": "ManMadeObject",
"label": "Attic Black-Figure Neck Amphora",
"classified_as": [{"id": "aat:300148696", "type": "Type", "label": "Amphora"}],
"made_of": [{"id": "aat:300015045", "type": "Material", "label": "Terracotta"}],
"produced_by": [{"id": ".../create", "type": "Production", "label": "Creation event"}]
// ...
```
Case study: GenBank Metadata mining

“From 1982 to the present, the number of bases in GenBank has doubled approximately every 18 months.”

Image credit: https://www.nlm.nih.gov/about/2015CJ.html
GenBank's big metadata as a source for quantitative studies of team science
Collaboration across countries, labs, and fields

- Big problems, big data (and big metadata), and big teams
- Relations between data production and paper publication
- Large scale studies of collaboration networks to find patterns, structures, and empirical evidence for in-depth exploration

The complete genome sequence of the Gram-positive bacterium Bacillus subtilis

F. Kunst, N. Ogasawara, [...], A. Danchin

doi:10.1038/36786

Received: 16 July 1997
Accepted: 29 September 1997
Published: 20 November 1997

SOURCE ORGANISM
Bacillus subtilis subsp. subtilis str. 168

REFERENCE AUTHORS
The collaboration capacity framework

Collaboration capacity: the ability of an individual researcher or a team of researchers to collaborate throughout the data production and publication lifecycle and sustain a network of collaborators over time.

Assumptions:
- Collaboration capacity is a proxy for studying scientific capacity
- Data, publication, and patent together can be used as a proxy for studying knowledge diffusion
- Collaboration capacity significantly affects the level of research productivity and extent of knowledge diffusion

(Qin et al., 2018)
Methods

Source: metadata describing molecular sequences in GenBank

Exploratory data analysis (EDA)

Social Network Analysis (SNA)

Based on our framework, datasets generated include:

- Size of collaboration networks for data submission
- Extent of knowledge diffusion
- Rate of knowledge diffusion

Purpose: using descriptive stats and visualization techniques to look for patterns, structures, and problems
Findings

- Connectedness of collaboration networks
- Ratio of data submissions to publications
As early as 1994, the number of data submissions surpassed that of publications.
Authors remain well connected over time. While more clusters of smaller communities emerged.
Ratio of submissions to publications

- **x axis:** # of authors who submitted sequence data
- **y axis:** # of authors who published a paper associated with the data submissions
- After 1998, more authors were involved in data production than those in paper publications
- Significant increment in productivity:
 - Before 1998, majority had a range between 20 publications and 50 data submissions
 - Since 2008, a sizable # of authors had a high productivity in the range of 50~100 publications and 100~300 data submissions
A sharp increase in the average ratio of submission to publication: signaling a turning point for microbiology to become data-intensive science?
Conclusion

(Big) metadata analytics uses metadata as the data source to:
- Study phenomena, trends, behaviors, and relations
- Produce semantically precise, linked data for better discovery, access, and management of information resources and datasets

As an emerging research field, it faces great challenges in
- Methodologies: workflows, tools, and practices that reduce reinventing the wheel and enhance research reproducibility
- Data: scattered, in different formats, messy, and over 80% of time spent in getting data ready for analysis
References
