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ABSTRACT 

This paper reports our ongoing work investigating the structural 

features of scientific collaboration based on metadata collected 

from a scientific data repository (SDR). The background literature 

is reviewed in supporting our claim that metadata collected from 

SDRs offer a complimentary data source to traditional publication 

metadata collected from digital libraries. Methodological 

considerations are discussed in association with using metadata 

from SDRs, including author name disambiguation and data 

parsing.  Initial findings show that the network has some unique 

macro-level structural features while also in agreement with 

existing networks theories. Challenges due to inconsistent 

metadata quality control procedures are also discussed in an 

attempt to reinforce claims that metadata should be designed to 

support both domain specific retrieval and evaluation and 

assessment needs. 
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H.3.7 [Digital Libraries]: User Issues, Collections.  
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1. INTRODUCTION 
The emergence of scientific data repositories (SDRs) as tools for 

supporting the sharing, archiving, and processing of scientific data 

for research fields is thought to be changing the scale and 

structure of scientific collaboration [1]. However, little empirical 

work has been done on the structure of networks emerging around 

SDRs. In this paper, we discuss: some of the differences between 

traditional digital libraries designed for publications and SDRs, 

how SDRs may serve as a complementary source of data for 

studying scientific collaboration, and methodological challenges 

of working with metadata from SDRs. Finally, we report on our 

preliminary findings studying one network emerging around a 

specific SDR.  

1.1 Scientific Data Repositories 
Over the past two decades, there has been a shift to 

cyberinfrastructures (CI) enabled science. The National Science 

Foundation instituted an Advanced Cyberinfrastructure Division 

to provide guidance and develop a framework for maximizing the 

use of CI to promote scientific inquiry. Data sets are considered 

key components of 21st Century science and engineering [2]; as 

such, the generation, analysis, storage, sharing and reuse [3], [4] 

of data are critical policy priorities. 

There are two approaches to storing, searching, and accessing data 

for reuse and integration. On one hand, scientific data repositories 

support the storage, dissemination, analysis and linking of data 

sets, and are being employed in a variety of fields from ecology to 

physics. Examples include the World Wide Molecular Matrix,  

ALADDIN for atomic and nuclear processes data, Brain 

Biodiversity Bank, and GenBank for genetic data. On the other 

hand, there are attempts to develop systems which support the 

search and use of smaller data sets produced by scientists for 

smaller, somewhat independent projects [5]. 

In this research we explore one example of an SDR – GenBank, 

the international nucleotide sequence databank. GenBank is run 

by the National Center for Biotechnical Information, and has been 

in operation since 1984. GenBank is now part of the international 

nucleotide sequencing consortium in which each member 

exchanging information daily. 

GenBank houses genome sequencing data for over 130 billion 

base pairs covering 250 000 different species [6]. GenBank has 

doubled in size roughly every eighteen months. In addition to 

storing genetic information, GenBank provides a number of tools 

for discovery and analysis. 

The repository has been well adopted by its respective 

community, which now requires all scientists to submit genetic 

data to the repository prior to publication. In addition to storing 

genetic information for scientific publications, GenBank serves as 

a repository for patented genetic information. 

As stated earlier, SDRs are one aspect of cyberinfrastructure 

enabled (CI) science, and they are a key component of the “Fourth 

paradigm of science” proposed by Jim Gray [7]. The fourth 

paradigm refers to a data intensive approach to science, requiring 

the integration of skill sets from many domains [8]. As a result, it 

is argued that this data intensive approach is affecting the 

structure and scale of scientific collaboration [1]. Before going 

into detail about the structure of collaboration, we provide a brief 

justification for continued research on the phenomenon of 

scientific collaboration. 

1.2 Scientific Collaboration 
Scientific collaboration is a critical component of science along 

many dimensions; for example, it is a mechanism for socializing 

[9] and training [10] new researchers, sharing resources or 

expertise [11], and to lesser extent, a form of diplomacy [12]. 

Scientific collaboration is thought to spur economic development 

[13], particularly when integrated with government and industry 

partners [14]. Given the importance of collaboration to the 

scientific endeavor, Bozeman and colleagues [15] argued that 

each scientist should be looked at as having scientific and 

technical human capital. That is to say, a scientist’s value is based 

on both their domain knowledge and professional social network.  

Consequently, there is considerable interest at the policy level for 

understanding and fostering scientific collaboration. The Science 
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of Science Policy Program considers the study of the structure and 

evolution of networks, along with the development of subsequent 

methodology, tools, and techniques, to be key components of the 

program [16]. 

1.3 The structure of scientific collaboration 
Although scientific collaboration has been studied for over five 

decades, the use of network analysis frameworks to study the 

phenomenon has only recently begun to be popular. Advances in 

graph theory and computational power have enabled their 

widespread application, which has resulted in rapid developments 

in network analysis frameworks. 

We will not provide a review of the literature on scientific 

collaboration networks here, as our purpose is instead to look at 

this problem more from the intersection between methodological 

considerations and digital repositories. There are several good 

reasons for using network analysis framework for studying 

scientific collaboration. The first is that the reconstruction of 

collaboration networks helps us explore the theories behind the 

social construction of knowledge. The second reason is that 

reconstructions of networks can help us find subject matter 

experts [17]. Network analysis also helps us understand, visualize, 

and quantify different forms of status or roles within communities 

[18]–[21]. 

In the next section we will cover the roles digital libraries have 

played in the study of scientific collaboration networks and some 

of the challenges associated with using digital libraries as a source 

of data for the study of scientific networks. We will then discuss 

how scientific data repositories may be mined for collaboration 

data, the benefits of using SDRs as a source of data, and the 

challenges associated with their use. 

2. METHODOLOGY 
Although collaboration can be broadly construed, it is often 

operationalized as co-authorship, where any two scientists are 

considered to have collaborated if they wrote a paper together. 

There are known limitations of this approach to 

operationalization, both as it relates to under-representing and 

over-representing collaboration. 

In terms of under-representing collaboration, using co-authorship 

as a measure of collaboration misses informal feedback which 

may be critical for the success of a project [22], and masks the 

shifting nature of contributions. To some extent, the former 

concern is well documented and addressed by the growth in use of 

acknowledgements to give credit to those who have made 

contributions that do not quite warrant co-authorship [23]. 

With respect to co-authorship over-representing collaboration, the 

primary concern is the tendency for researchers to give honorary 

co-authorship credit to other scientists for social reasons [24]. 

Although these concerns remain valid, co-authorship is still 

considered a useful measure for collaboration [25]. Given the fact 

that co-authorship is the most frequently used measure of 

collaboration, metadata from scientific articles is the primary 

source of data for collaboration studies. In turn, digital libraries 

are the primary source of metadata. It is important to note that 

some researchers use a combination of qualitative or ethnographic 

studies to augment the data collected from digital libraries [26]. 

Although co-authorship is still useful for measuring collaboration, 

it only represents a summary of contributions. That is, it obscures 

who contributed what to the creation of the product. For example, 

who is responsible for generating data for analysis? Traditionally 

this has been the work of the subject matter expert. However, 

more recently there has been an increasing role of specialists in 

the creation of data [27], [28]. How can we tell who contributed to 

the generation of the data, as most data products are mid-stream 

creations in the scientific process? One approach is to develop a 

contributory taxonomy which would allow scientists to match 

roles to authors when submitting research [29]. We can also look 

at knowledge products other than final publications (e.g., data 

sets), because in many cases scientists still lay intellectual claim 

to those products. We demonstrate here that this holds true when 

they submit data products to SDRs.  

Therefore, we argue that SDRs are complimentary sources of data 

to explore scientific collaboration. If it is true, then metadata 

extracted from SDRs can be used as a source of data for validating 

and testing models and theories developed on article-based co-

authorships. The remainder of this section will cover some of the 

challenges we have encountered using metadata from an SDR to 

study scientific collaboration. 

Our source of data is GenBank (see above). In addition to making 

genetic data searchable via a web interface, NCBI hosts an ftp site 

that has all the data and metadata in semi-structured text files. In 

August 2013 we downloaded the entire contents of GenBank, 

parsed out all metadata from the text files, dropped the genetic 

sequence data, and then parsed the metadata into a MySQL 

database.  

The next phase involved data cleanup and resolution. As with 

most sources of data, GenBank’s metadata quality is mediocre, 

with some inconsistencies in the formatting of organizational and 

consortium affiliations, and date entries. The costs associated with 

developing tools to parse the data is non-trivial, adds considerable 

costs to each assessment exercise, and speaks to the need for 

developing automated tools that assist in metadata quality 

improvement. 

Additionally, named entity resolution continues to be a problem 

[30]. Almost all studies using co-authorship have this problem. 

An increasing number of studies use disambiguation algorithms to 

address this issue and ours is no exception. We too are employing 

disambiguation algorithms, and are able to leverage a subset of 

the data collected as ground-truth data because it is attached to 

well-curated metadata from PubMed. 

One major challenge we face is understanding what constitutes a 

contribution. When working with publication information, 

researchers assume that each publication required a roughly equal 

amount of effort to produce, and therefore each publication is 

given equal weight. Based on that assumption, researchers can opt 

to give full-credit or fractional-credit [31], [32] for each 

publication scientists are listed as an co-author for. However, 

there is no easy way to apply either full or fractional counting 

methods to data contributions. 

Data sets are uploaded as submissions, which include some set of 

annotations with distinct gi numbers. The annotations cover a 

subset of the total number of base pairs for the organism. Most 

submissions are associated with one or more references. 

References include publications, direction submissions, and 

unpublished references. The ratio of references to annotations for 

non-patented sequences is roughly 1:112.  

However, things change when we include patents, with the ratio 

of annotations to patents being 1:1. This means that scientists will 

aggregate and report on many sub-sections of sequenced DNA in 

one publication while patenting each sub-section. This makes it 

difficult to understand or measure productivity. One possible 
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solution is to use the number of base pairs per reference or patent 

as a guide, but this may differ from species to species making it 

difficult to apply across the board. 

One additional consideration is how to select appropriate social 

foci for extracting sub-sections of the population for more in-

depth analysis. Our intuition is that the species serves as the 

primary focal point for community formation, but we have not 

been able to empirically test that hypothesis yet. 

In the next section we report on our macro-level analysis of the 

database. This includes measuring standard network analysis 

concepts such as the clustering coefficient, degree distribution,  

3. PRELIMINARY RESULTS 
After extracting the metadata from GenBank records, we have 

identified almost 176 million annotations to the database, 

covering some 1.35 million references and 25 million patents. As 

of the time of submission of this report, we have identified 

545,000 individual authors after our first pass at name 

disambiguation. This does not include scientists associated with 

patents, as that data has not been fully parsed yet. There are 931 

consortiums listed in the metadata, with an unresolved number of 

institutions (Table 1). 

Table 1. Macro-level statistics 

No. of scientists 545,534 

No. of annotations 175,889,683 

No. of references 1,351,049 

Mean authors per reference 5.18 

Mean references per author 12.5 

No. of components 2,699 

Size of giant component 98.3% 

Clustering coefficient .172 

 

Like many previous studies, we see a power law distribution of 

connections and productivity. On the average, a scientist produced 

12.5 submissions (μ = 12.5, σ = 194.8) and a maximum value of 

39,747. While the very large deviations  may be the results of 

various reasons, it seems to also reflect the fact that some lab 

managers affix their name to every submission, which makes 

them appear to be exceptionally productive [33].  

As for the number of scientists per reference, we have a μ=5.18, 

σ= 11.9 and a maximum of 415. Although very few references 

have that many scientists, we can see why researchers are 

concerned about the tendency for co-authorship to over-represent 

collaboration. 

The size of a giant component is another finding worth 

highlighting. The giant component refers to the percentage of 

scientists in the community who are all directly or indirectly 

connected to one another. In some cases, there are multiple 

components that are not connected in any way, essentially 

indicating that the populations are isolated from one another. One 

of the initial concerns of using metadata as a source of data for 

studying collaboration was that it might not contain enough 

information to reconstruct a network. Yet our analysis indicates an 

exceptionally high level of connectivity, with it being much 

higher than results from other data sources, which often range 

from 57-88%, and one or two exceeding 90%.  

The clustering coefficient, or the tendency of scientists to 

collaborate with their collaborators’ collaborators, indicates that 

the community is only moderately well-connected, at least as far 

as social networks go. Coupled with the observed degree 

distribution we can say that this is a relatively hierarchical system 

with a few scientists controlling much of interactions. Finally, 

based on the average path length, the small-world theory that the 

average path length increases in proportion to the log of the 

number of scientists in the network holds true for this network as 

well [34]. 

4. DISCUSSION 
In this report we discussed the increasing emphasis on developing 

and employing quantitative measures to track and assess scientific 

collaboration. More specifically, advancing theories, techniques 

and methodologies associated with studying scientific 

collaboration networks is a critical component of the Science of 

Science Policy Program [16]. 

In the past, digital libraries, including proprietary databases and 

open pre-print archives have served as the traditional source of 

data for studies on scientific collaboration. There are known 

limitations of using this data for studying collaboration. We have 

argued that scientific data repositories can serve as a 

complimentary source of data, both for verifying and advancing 

scientific theory. 

We covered a number of methodological challenges associated 

with using SDRs as a source of data for collaboration studies. We 

would like to highlight the fact that metadata quality dramatically 

impacts the costs of using article archives and research data 

repositories as sources of data for these studies. As a result we 

suggest designing metadata schemes to support both domain 

specific information retrieval and evaluation and assessment 

needs. 

Our initial analysis indicates that the metadata obtained from 

GenBank reasonably represent a community, as evidenced by the 

size of the giant component, clustering coefficient and average 

path length. Furthermore, the exhibited degree distribution 

conforms to our expectations, as it is similar to many other 

findings. 

Looking to the future, SDRs will continue to serve as an important 

infrastructural component for the scientific process. Scientists will 

continue to share and, perhaps to a greater degree reuse, data. We 

also see data from SDRs being integrated with other sources into a 

more complete story of collaboration, supporting the inquiry of 

researchers and policy makers who are interested in learning who 

contributes what to the production of knowledge [29]. 
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